

BBC-003-1194003 Seat No. _____

M. Sc. (Sem. IV) (CBCS) (WEF-2016) Examination

July - 2021

Microbiology: MICRO-421

(Biomolecular Engineering (Elective))

Faculty Code: 003

Subject Code: 1194003

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70

Instruction: Answer any five questions. Each question is of 14 marks.

1 Answer all seven: (2 marks each)

14

- Define Domain in protein structure. (1)
- (2) Define molecular chaperone.
- (3) Define protein engineering.
- (4) Describe DNA-chip technology.
- (5) What is oligonucleotide array detector?
- What is application of Inverse PCR? (6)
- What is application of Multiplex PCR? (7)
- Answer all two: (7 marks each) 2

14

- Write in detail molecular forces/bonds that stabilize protein structure.
- (2)Describe various domain structures and their importance in catalysis.
- Answer all two: (7 marks each) 3

14

- Explain mechanistic detail of Hsp60 a molecular chaperone in protein folding.
- Write about various molecular chaperones active in (2)extreme environmental condition.

4	Answer all two: (7 marks each)		14
	(1)	Explain role of gene shuffling with respect to directed evolution.	
	(2)	What is the method for screening of novel traits created by protein engineering?	
5	Answer all two: (7 marks each)		14
	(1)	Explain the principle of Sanger's sequencing.	
	(2)	Explain next generation sequencing.	
6	Answer all two: (7 marks each)		14
	(1)	Strategies for primer designing.	
	(2)	Describe the molecular tagging of expressed proteins.	
7	Answer all two: (7 marks each)		14
	(1)	Explain Pathway evolution as a part of protein engineering.	
	(2)	Explain gene expression can be enhanced by change in codon usage bias.	
8	Answer all two: (7 marks each)		14
	(1)	Application of molecular chaperones in medical field as biotechnological significance.	
	(2)	Explain role of Molecular chaperone in cellular proteostasis.	
9	Answer all two: (7 marks each)		14
	(1)	Explain the peptide geometry with an example.	
	(2)	Explain functioning of molecular chaperone Hsp 100 in	
		disaggregation of misfolded protein.	
10	Answer all two: (7 marks each)		14
	(1)	Explain Real time PCR method and principle.	
	(2)	Explain gene expression can be enhanced by change	
		in codon usage bias.	

2